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Foreword

Although the use of wind energy as an alternative electric generation source is now a viable choice, concern
is still raised over the possible impacts of wind farms on birds.  The concern includes two primary areas: the
effect of avian mortality on bird populations, and possible litigation over the killing of even one bird if it is
protected by the Migratory Bird Treaty Act, the Endangered Species Act, or both. 

The activities of the avian research program at the National Renewable Energy Laboratory (NREL) focuses
on working towards minimizing the effects of wind turbines on birds and bird populations.  NREL, funded
by the U.S. Department of Energy, conducts research that (1) contributes to the refinement of the methods
developed to assess impacts on the avian populations within wind farms, (2) seeks to understand how birds
behave in and around wind turbines in different environments, (3) will try to identify how birds recognize wind
turbines and develop recommendations for increasing the conspicuity of the turbines, and (4) will soon conduct
acoustical research to develop acoustical deterrents where needed.

The habitat surrounding the Altamont Pass Wind Resource Area (WRA) supports a substantial resident
population of golden eagles (Aquila chrysaetos), perhaps one of the most dense ever recorded.  Each year, the
wind industry reports 28–43 golden eagles killed by turbine blade strikes in the Altamont WRA.

NREL has supported the Santa Cruz Predatory Bird Research Group at the University of California, Santa
Cruz, in conducting a golden eagle population study in the Altamont Pass WRA.  The research, conducted over
a four-year period, was designed to assess the impact of golden eagle deaths in the wind farm on the species’
population survival and reproduction.

This research project, begun in 1994, included a preliminary field investigation of the ecology of the golden
eagles in the vicinity of the Altamont Pass WRA.  The first year report, A Pilot Golden Eagle Population Study
in the Altamont Pass Wind Resource Area California, provides an extensive discussion of the natural history
and ecology of the golden eagle in the Altamont Pass WRA.  

A second report, A Population Study of Golden Eagles in the Altamont Pass Wind Resource Area: Second-
Year Progress Report, provides an excellent discussion of how the population was sampled, the survival and
distribution of the radio-tagged eagles through August 1996, and estimates of reproduction based on nesting
surveys.

This final report provides a detailed discussion of the data and research findings.  Much has been learned
during the first four years of this study.  However, because the golden eagle is a long-lived species, the findings
contained in this document are considered preliminary.  Additional data collection over the next few years
should provide a better understanding of how the golden eagle population is being impacted in the Altamont
Pass WRA.

Karin C. Sinclair
National Wind Technology Center
National Renewable Energy Laboratory
1617 Cole Boulevard
Golden, Colorado 80401
E-mail: karin_sinclair@nrel.gov
Phone: (303) 384-6946
Fax: (303) 384-6901
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EXECUTIVE SUMMARY

The Predatory Bird Research Group (PBRG), University of California, Santa Cruz, is conducting a
long-term field study of the ecology of golden eagles (Aquila chrysaetos) in the vicinity of the
Altamont Pass Wind Resource Area (WRA). The facility lies just east of San Francisco Bay in
California and contains about 6,500 wind turbines on 190 km

2 
 of rolling grassland. Each year, the

wind industry reports 28–43 turbine blade strike casualties of golden eagles in the WRA, and many
more carcasses doubtless go unnoticed. Because golden eagles are naturally slow to mature and
reproduce, their populations are sensitive to changes in adult and subadult survival rates. The U.S.
Fish and Wildlife Service and the California Department of Fish and Game have therefore expressed
concern that the fatalities might have an adverse effect on the population. PBRG’s four-year
investigation of the population trend (January 1994 through December 1997) was supported for the
first three months by the wind industry and thereafter by the National Renewable Energy
Laboratory.

Annual nest surveys have revealed a substantial breeding population, the density of which is among
the highest reported for the species. An 820–km

2
 area near the town of Livermore held at least 44

pairs in 1997, a density of one pair per 19 km
2
. PBRG has estimated that at least 70 active territories

exist within 30 km of the WRA boundary. Territory occupancy from year to year has been 100%,
and the reproductive rate, based on an annual sample of about 60 pairs, averaged 0.61 fledged
young (∼0.25 females) per occupied site.

To estimate survival rates, we tagged 179 eagles with radio transmitters equipped with mortality
sensors and expected to function for at least four years. Population life stages represented in the
tagged sample included 79 juveniles, 45 subadults, 17 floaters (non-territorial adults), and 38
breeders.  Effective sample sizes in the older stages increased as eagles matured or became territorial.
Thus, by the end of the study, we had obtained telemetry data on 106 subadults, 40 floaters, and 43
breeders, in addition to the 79 juveniles.

Weather permitting, we conducted weekly roll-call surveys by airplane to locate the radio-tagged
eagles and to monitor their survival.  The surveyed area, defined by the movements of tagged birds
during the first few months of the study, extended from the Oakland Hills southeast through the
Diablo Mountain Range to San Luis Reservoir about 75 km southeast of the WRA.

Of 61 recorded deaths of radio-tagged eagles during the four-year investigation, 33 (54%) resulted
from electrical generation or transmission. Of these, 23 (38%) were caused by wind turbine blade
strikes, and 10 (16%) by electrocutions on distribution lines, all outside the WRA. Additional
fatalities went unrecorded because turbine blade strikes destroyed the transmitter in an estimated
30% of cases. The aerial surveys showed that breeding eagles rarely entered the WRA, whereas non-
territorial eagles tended to move about freely throughout the study area, often visiting the WRA.

Computer analysis of survival data (Program MARK) by Alan Franklin, Tanya Shenk, and Ken
Wilson (1998) from Colorado State University considered Kaplan-Meier survival estimates among
the various groupings of life stages and sexes. Their most parsimonious solution was a pooling of
data from juveniles, subadults, and floaters of both sexes to produce a single estimate of annual
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survival for non-territorial eagles at 0.7867 (SE=0.0263). The estimate for the annual survival of
territorial eagles (breeders) was 0.8964 (SE=0.0371).

Franklin, Wilson, and Shenk (1998) developed two Leslie matrix models to estimate the trend of the
population. The first, which incorporates the rate at which non-territorial eagles become breeders,
estimated the annual rate of population change (λ) at 0.9068 (SE=0.03). The 95% confidence
interval of this estimate did not include λ = 1.0, the value for a stable population. This means that, if
their model and its assumptions are valid, the population was in a state of decline during the period
of our study.

The second model, configured at our request, estimated potential growth rate on the assumption
that all maturing eagles enter the breeding segment. Part of our rationale was that, once a declining
population loses its floating segment, the floater-to-breeder transition rate is moot and only adds
variance to the trend estimate. This was of particular concern because the available floater-to-breeder
transition rate estimate lacked precision (CV=66.7%). Moreover, the floater-to-breeder transition rate
can be expected to change with population size and therefore cannot be modeled as a constant.
Franklin, Wilson, and Shenk’s (1998) estimate of λ in the second (potential growth rate) model was
0.9880, a value statistically indistinguishable from unity. A Moffat life table model developed by
Hunt (1998) yielded a virtually identical value for λ. Sensitivity analyses for both the matrix and
Moffat models found the population most responsive to changes in adult survival and least affected
by variation in juvenile survival and reproduction.

Several biological considerations suggest that the potential growth rate of the population is actually
lower than estimated. First, we are likely overoptimistic in assuming perfect efficiency by non-
territorial eagles in filling breeding vacancies by the next breeding season. Second, eagles newly
acquiring territories would be initially less fecund than those being replaced, reducing net
population productivity. Third, true survival rates are likely lower than estimated because a
proportion of transmitters were destroyed by turbine blades.

On the other hand, several factors may operate in favor of population persistence. If floaters
immigrating from other subpopulations are available, they may buffer the breeding segment against
decline. Moreover, average territory quality— and hence average per capita reproduction— can be
expected to increase if the number of territories declines. Other points of optimism include the
observed 100% annual territorial reoccupancy rate and the low incidence (3%) of subadults as
members of breeding pairs, an indication that a reserve of floaters continues to exist.  

The wind industry at Altamont Pass has recently initiated a number of measures that may reduce the
rate of turbine blade strikes. These include modification of existing turbines, the removal of turbines
in “high-risk” areas, and the replacement of turbine models with others thought to be more benign.
In the latter case, the replacements are more efficient, the net result being far fewer turbines. To
track the efficacy of these and other possibly mitigating changes, PBRG will continue to radio-tag
eagles, monitor eagle movements and survival, conduct an annual nest survey, and model the
accruing data to reassess the population trend.
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1.0 INTRODUCTION

On the basis of field surveys, Orloff and Flannery (1992) estimated that several hundred raptors are
killed annually by turbine blade strikes, wire strikes, and electrocutions at the Altamont Pass Wind
Resource Area (WRA) near Livermore, California. The most common fatalities were those of red-
tailed hawks (Buteo jamaicensis), American kestrels (Falco sparvarius), and golden eagles (Aquila
chrysaetos), with lesser numbers of turkey vultures (Cathartes aura), common ravens (Corvus corax),
barn owls (Tyto alba), and others. The numbers of discovered fatalities among certain species did not
always correspond to their observed abundance in the WRA. Although Orloff and Flannery
witnessed no turbine strikes, they believed that the tendency of hawks and eagles to directly pursue
prey rendered them more vulnerable to collisions with structures than did the more tentative
scavenging flights of turkey vultures and ravens.

Among the species of raptors killed at Altamont Pass, the one whose local population is most likely
to be impacted is the golden eagle. Besides its being less abundant than the others, the breeding and
recruitment rates of golden eagles are naturally slow, increasing their susceptibility to population
decline as a result of mortality influences. Golden eagles are a Species of Special Concern in
California (California Fish and Game Department 1992), and reductions have been documented in
the southern part of the state (Scott 1985, Harlow and Bloom 1987). The golden eagle is afforded
special federal protection because of its inclusion within the Bald Eagle Protection Act as amended in
1963. There are no provisions within the Act that would allow the killing ("taking") of golden eagles
by WRA structures.

This report, in partial fulfillment of National Renewable Energy Laboratory (NREL) Subcontract
XAT-6-16459-01, is the third and final of a series detailing the results and conclusions of field
studies conducted in the Altamont Pass region from January 1994 to June 1997, with additional data
(through December 1997) on eagle survival provided by the senior author. The primary purpose of
the investigation is to estimate the extent to which turbine strikes and other hazards associated with
wind energy production at Altamont Pass alter the demographic potential of the golden eagle
population inhabiting the surrounding area.

This report focuses on analyzing the trend of the population and, although intended to communicate
all information essential to the interpretation of the conclusions, the reader may benefit by having on
hand our first and second reports to NREL. In the first (Hunt et al. 1995), we review pertinent
aspects of the natural history and ecology of the golden eagle, describe the study area in some detail,
explain our field methods, report our first-year results, and provide a glossary of terms. In the
second report (Hunt et al. 1997), we discuss our sampling strategy and some of the biases and
assumptions associated with vital rate (survival and reproduction) estimation and model
development. Both documents chronicle our progress in population sampling, describe the ongoing
results of surveys, and show the evolution of our thinking with respect to data interpretation. This
report duplicates those portions of the earlier ones considered appropriate to clarity and substance. 
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2.0 STUDY AREA

The study area, defined by the movements of golden eagles we radio-tagged near the WRA, is
bounded to the north by the Sacramento River Delta, to the east by the San Joaquin Valley, to the
west by San Francisco Bay and urban areas extending from Berkeley to San Jose, and to the south by
that portion of State Highway 152 running from Hollister to San Luis Reservoir.

The WRA itself (approximately 141 km
2
) is mostly grassland, an area of private cattle ranches on

gently rolling hills composed almost entirely of European annual grasses, with occasional rocky
outcroppings and widely scattered stands of oak, eucalyptus, and California buckeye (Aesculus
californica). The windy season extends from April through September, although there are occasional
windy days during the remainder of the year.

The grasslands east of the WRA gradually descend to the agricultural flatlands of the San Joaquin
Valley. To the north, the habitat is an extension of that found on the WRA: low hills covered by oak
savanna (grassland with scattered stands of oak) and occasional eucalyptus groves. West of the WRA
is a series of ridges running from northwest to southeast. On these ridges, the habitat on the
southwest-facing slopes is primarily grassland, while on the slopes facing northeast it is mostly blue
oak (Quercus douglasii) savanna and woodland. Further to the northwest, the hills rise to the steeper
peaks of Mt. Diablo, which exceeds 1,000 m in height. Here the habitat becomes more diverse, and
includes blue and live oak (predominantly Quercus agrifolia) woodland, chaparral, sage scrub,
savanna, and open grassland. Land use in this area is mainly pastoral, with moderate recreational use
in parks.

The Altamont Pass Wind Resource Area (photo by Daniel Driscoll)
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The Livermore Valley, which lies to the west of the WRA, is principally urban and light industrial in
use. Vineyards and golf courses are scattered throughout, and ranches dominate the outlying areas.
The town of Livermore supports 63,000 people, with 55,000 living in nearby Pleasanton.
Surrounding the urban center are rolling hills of valley oak (Quercus lobata) and blue oak savanna. In
addition to ranching, there are three large reservoirs in the southern part of the valley (Del Valle, San
Antonio, and Calaveras reservoirs) managed for municipal water and, in some cases, recreation. A
fourth, Los Vaqueros Reservoir, is under development in the northern portion of the valley adjacent
to the WRA.

South of the Livermore Valley lies the Diablo Range, a relatively large, sparsely inhabited,
mountainous region, bordered on the east by the San Joaquin Valley and on the west by the city of
San Jose and the Santa Clara Valley. The Diablo Range comprises an area of roughly 3,500 km

2
 and

contains several peaks over 1,000 m in height. The diverse habitat includes blue oak/foothill pine,
black sage (Salvia mellifera), California sagebrush (Artemesia californica), chaparral, and oak savanna.
Much of the land is used for cattle ranching, and there are several large parks. A corridor of rolling
grassland extends from the WRA southeastward and surrounds the Diablo Range.

Adjacent to habitats occupied by breeding golden eagles in Alameda, Contra Costa, and Santa Clara
counties is a rapidly growing metropolitan complex. During the 1980s, the human population of
these three counties increased by over 17% (California Department of Water Resources 1994) and,
by 2015, the population is expected to approach 4.5 million (Association of Bay Area Governments
1996).

3.0 THE GOLDEN EAGLE: BACKGROUND INFORMATION

Properly estimating the population trend of any species requires knowledge and understanding of its
life history and ecology. Our experience during this project has revealed many sources of potential
misinterpretation in this regard. Therefore, we summarize those facts we believe are appropriate to
the analysis and its assumptions and provide additional information of probable interest to the
reader. For further reading on golden eagles and related topics, we recommend Newton (1979),
Gargett (1975, 1977), Haller (1982, 1996), Tjernberg (1985), and Watson (1997).

3.1 Natural History
Distributed throughout the Northern Hemisphere, golden eagles are among the largest of raptors,
with wingspans of up to 2.3 m and weights approaching 7 kg. Females are about 25% heavier than
males, a difference relating to their divergent roles during the breeding season. Until the young are
half-grown, the female guards the nest while the male provides food. The larger size of the female
increases her effectiveness in brooding and nest defense, while the smaller male is a better forager
because of his ability to carry larger prey relative to his own weight and to achieve higher rates of
acceleration. The participation of the male throughout the reproductive cycle renders him virtually
essential to brood survival, a condition contrasting with that of many non-raptors in which males are
largely superfluous after courtship and insemination.

Golden eagles in our study area forage primarily on live mammals in open grassland habitats. In
winter, eagles readily utilize carrion, including deer and cattle carcasses, and may exploit waterfowl
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concentrations. California ground squirrels (Spermophilus beecheyii) are the dominant prey in the
Diablo Range study area. In 339 prey items from collections made at golden eagle nests in the study
area in 1994, we estimated that the California ground squirrel represented 69% of prey numbers and
64% of prey biomass. The second most important species was the black-tailed jackrabbit (Lepus
californicus) at 8% biomass; the third was the black-tailed deer (Odocoileus hemionus) at 6%. In all,
mammals accounted for 92% of prey biomass, followed by 7% for birds, and 1% for reptiles. We
caution the reader that these percentages represent only a cursory index of the overall eagle diet
during a single breeding season. A more accurate appraisal would require direct and systematic
observations of foraging adults, concurrent observations of prey deliveries, and further sampling of
nest remains (Hunt et al. 1992).

Because of the mild climate, California ground squirrels in our study area are available to eagles
throughout the year. In this respect, they differ from many other ground squirrel species that
aestivate and/or hibernate for long periods. California ground squirrel populations do not appear to
cycle in abundance over multiyear periods as do, for example, jackrabbits, the main prey of golden
eagles in most western states. However, prolonged winter rainfall in some years may reduce ground
squirrel availability and overall numbers (Grinnell and Dixon 1918).

Golden eagles in the interior central Coast Ranges of California occur primarily in grazed, open
grasslands and oak savanna, with lesser numbers in oak woodland and open shrublands. With
increasing urbanization, much of the remaining golden eagle habitat in central and southern
California is located within private ranches used for livestock grazing.

Over much of their range, golden eagles prefer cliffs for nesting, but in the Diablo Range study area,
all but a few pairs nest in trees, including several oak species (Quercus spp.), foothill pine (Pinus
sabianiana and P. coulteri), California bay laurel (Umbellularia californica), eucalyptus (Eucalyptus
spp.), and western sycamore (Platanus racemosa). The Diablo Range eagles nest mainly in oak
savanna and oak woodland. Open grasslands are generally unsuitable for nesting due to lack of
suitable structures. However, a few pairs of eagles nest on electrical transmission towers traversing
grasslands.

Golden eagle pairs in the Diablo Range participate in courtship and nest building in December and
January, lay 1–3 eggs in February and March (incubation lasts 6.5 weeks), and fledge their 10- to
11-week-old young from mid-May to late June. Fledglings usually stay within their natal territories
until mid-August, although some individuals may remain in the vicinity until December.

3.2 Population Ecology
Healthy golden eagle populations contain four population segments: breeders, juveniles, subadults, and
floaters (see Figure 3.1). Differing environmental and behavioral factors may influence the numbers
of each within a population. Breeders are individuals four years old or older that defend territories
containing a potentially successful nest. Because breeding pairs of golden eagles partition the
landscape into a mosaic of territories from which other adults are excluded, there is an upper limit
to the number of breeders within any defined area.

For golden eagles, territorial boundaries tend to remain fairly stable from year to year (Marzluff et al.
1997), and eagles can often be seen performing displays known as undulation flights that serve as a
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warning to other eagles to stay away (Harmata 1982). As in other bird species, the size and density
of eagle territories are a function of either food or nest site availability, depending on which is the
limiting factor. In years of low prey availability, eagles may forgo breeding but still occupy and
maintain their territories. The relationship between territory density and food supply is therefore
most apparent over the long term and suggests that the elements defining the nesting territory are
largely physiographic.

Juveniles are eagles less than one year old, and subadults are one, two, and three years of age. The
number of juveniles in each yearly cohort is restricted first by output from a limited number of
breeding pairs per unit area of landscape, and further by mortality factors. Numbers of eggs,
nestlings, and fledglings may be affected by food scarcity, weather events, human disturbance,
predation, and other factors. After fledging, the itinerant juveniles and subadults experience further
attrition, both natural and human-related.

Floaters are adults without breeding territories (Brown 1969). The existence of floaters is an
indication that all habitat suitable for breeding is occupied by territorial pairs (Hunt 1988,1998). In
order to breed, a floater must either wait for a vacancy or forcefully evict a territory owner (Gargett
1975). To understand the dynamics of floating segments, imagine a vacant region colonized by a few
pairs of eagles, each pair defending a territory from trespass. If conditions are favorable, the
population grows until all serviceable breeding locations are occupied by pairs, at which point
floaters begin to accumulate. Growth in the floating segment ceases when the annual number of
fatalities in the overall population matches the annual number of young produced. Because the latter
fluctuates within fixed limits as a result of environmentally imposed restrictions to the size of the
breeding segment, there is a resulting stabilization in floater numbers and overall population size, a
phenomenon known as Moffat’s equilibrium (Hunt 1998).

 

 Subadults
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Life Cycle
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Floaters safeguard the breeding segment by quickly replacing breeders that have died. On the other
hand, if the number of floaters is large relative to the number of breeders, floater competition for
nesting territories may reduce the reproductive rate (Hansen 1987). Haller (1996), studying golden
eagles in the Alps, showed that frequent incursions of floaters attempting to usurp breeding
territories caused nests to fail. This inverse relationship between natality and the number of floaters
is an example of a density-dependent feedback mechanism that may regulate the overall number of
eagles in the population.

The production of a robust floating segment is not only indicative of population stability; it is also a
measure of a population’s potential as a source of recruits to the larger landscape. Our results are
showing that the Livermore Valley and surrounding environs are of exceptional quality as nesting
and foraging habitat for golden eagles. Therefore, it is fair to assume that, in the absence of high
levels of human-related mortality, the area can be expected to contribute to population stability
within the larger region. The potential of the population to act as a "source" (Pulliam 1988) and,
indeed, the measure of its own stability, lies in its capacity to produce adult eagles. That potential is
reflected in the ratio of floaters to breeders (F:B) when the population is at equilibrium with the
existing regime of natality and mortality (see Hunt 1998).

4.0 APPROACH TO ESTIMATING THE POPULATION TREND

Step changes in vital rates do not exert their full influence on an eagle population until they have
been in place for many years, an interval roughly equal to maximum individual life span, during
which all age classes in the population have been affected by the change. Wind energy generation at
Altamont Pass first reached significant levels during the mid-1980s, when most of the turbines now
in existence were erected (see Figure 4.1). We assume that, during that period, turbine blade strikes
altered survival rates within the golden eagle population surrounding the WRA. As a consequence of
reduced survival in one or more population segments, the trend of the population was redirected
either toward a different point of equilibrium (with no change in the size of the breeding segment),
or toward the loss of the population’s capability of generating a floating segment. In the latter case, if
immigrant floaters were available to fill territorial vacancies and thereby counter normal attrition in
the breeding segment, the population would persist. If floaters were unavailable, the population
would decline to extinction. Because we are unable to assess immigration rates, we must focus
entirely on the action of survival and reproductive rates intrinsic to a defined population.

It follows that a decrease in survival rates resulting from WRA casualties would produce either (1) a
smaller equilibrium population native to the affected area, with no change in the territorial
component, or (2) a population dependent upon immigration for its existence. We will direct our
inquiry toward determining which of these two outcomes can be expected to result from the
influence of the vital rates estimated from our field data. For this purpose, we will first calculate the
potential growth rate of the population under the artificial assumption that all maturing adults
become breeders. A positive growth rate would suggest the equilibrium scenario, whereas a negative
growth rate would support the dependence scenario. 
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Alan Franklin, Tanya Shenk, and Ken Wilson from Colorado State University developed two models
to assess the trend of the eagle population (Shenk, Franklin, and Wilson 1996, Franklin et al. 1998).
The first calculates the rate of population change by considering not only the estimated survival and
reproductive rates, but also the rate at which floaters become breeders. By doing so, Franklin,
Wilson, and Shenk propose to estimate the trend of the population existing during the period of our
study. The second model, configured at our request, calculates the potential rate of population
change under the assumption that all eagles become breeders upon reaching adulthood. Both
models compute the standard error of the trend estimate. If the growth rate estimate predicts a
floating segment, we will use a model developed by Hunt (1998) to predict the stage structure of the
population at Moffat’s equilibrium. Finally, we will assess the impact of WRA-related mortality by
modeling the population trend in the absence of that influence, assuming no bias of competing risk
factors (see Section 5.5). The degree to which all these appraisals will reflect the true state of the
population depends on the validity of model assumptions, the accuracy of vital rate estimates, and
the degree to which conditions prevailing during the 42 months of our study reflect those of the
longer term.

Figure 4.1  Wind Turbine Development at 
Altamont Pass
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We have defined the study area on the basis of the movements of eagles we radio-tagged primarily
within 30 km of the WRA. Delineating the population impacted by turbine strikes is more
problematic. The question of the spatial extent of WRA influence would be especially important if
the trend of the population, as represented by our samples within the study area, were estimated to
be negative (alternative # 2). The status of outlying populations as sources of recruitment would
then clearly be a matter of inquiry. If, on the other hand, population equilibrium was predicted
within the study area, the spatial question would be less important.
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5.0 SAMPLING THE POPULATION

To assess the demographic trend of the population, we must estimate annual survival rates of each
population segment, the reproductive rate, and, for the purpose of Franklin et al.’s Model #1, the
floater-to-breeder transition rate. Our sampling program falls into three general categories of effort:
(1) radio-tagging, (2) radio-tracking, and (3) nesting surveys. We describe field methods for each of
these in our previous reports (Hunt et al. 1995, 1997). In this section we summarize these methods
and discuss the biases and assumptions of sampling that pertain to the population analysis.
   
5.1 Radio-tagging                                                                           (photo by Daniel Driscoll)

We radio-tagged 179 golden eagles
representing four population segments:
juveniles, subadults, floaters, and
breeders. We tagged all but a few of our
sample of itinerant eagles (i.e., floaters,
subadults, and itinerant juveniles)
within about 10 km of the WRA. We
tagged juveniles mainly as 8- to 9-week-
old fledglings at nests within about 20
km of the WRA. We caught most of the
breeders within this same array of
nesting territories.

We attached 65-g transmitters in
backpack configuration using 1.3-mm
teflon ribbon held together with waxed
cotton embroidery thread over the
carina, a procedure that allows the
transmitter to eventually fall off
(Garcelon 1985, Hunt et al. 1992).
Each unit was equipped with a
mortality sensor designed to activate
when the transmitter remained
motionless for four hours. The
manufacturer of the transmitters
(Biotrack) estimated battery life at four
to five years.

By the end of the study, we were able to
obtain a rough estimate of transmitter
reliability by monitoring the incidence of transmitter failure among radio-tagged breeders; their
continued presence in the territories could be verified visually. Of the four failures, all occurred long
before the end of expected battery life. To calculate the “survival rate” of transmitters, we treated the
failed ones as deaths and censored dead eagles for the period from January 1994 to June 1997.
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According to the Trent Rongstad formula (Trent and Rongstad 1974), the yearly transmitter survival
probability was 0.928 (95% C.I.=0.836 – 0.975).

The literature on the effects of transmitters on birds (e.g., Gessaman and Nagy 1988, Massey, Keane,
and Boardman 1988, Hooge 1991, Foster et al. 1992, and Peitz et al. 1993) shows that, in some
cases, transmitters reduced flight speeds, survival, and/or reproduction, whereas, in others, no effect
could be detected (e.g., Vekasy et al. 1996, Marzluff et al. 1997). Where documented, the
consequences appear largely species-specific and dependent on package size and attachment
configuration.

During the past decade we have placed our 65-g detachable units on hundreds of bald and golden
eagles and have detected no impacts on survival, nor has there been any indication that tags
interfered with territory acquisition or breeding (Hunt et al. 1992). However, because a comparison
of survival between samples of tagged and untagged eagles is unavailable, we shall remain uncertain
as to a possible difference. We note, however, that our transmitters weigh only about 1.3% of the
weight of the average female and 1.7% of the male. Comparative studies in the literature deal largely
with transmitters in range of 2.5–5.0% of body weight.

Our methods of determining the ages of the three classes of subadults are based on those developed
by Pete Bloom (Western Foundation of Vertebrate Zoology) and Bill Clark (Cape May Bird
Observatory), who showed us how to interpret the complex pattern of overlapping feather molt.
Using their system, we are able to estimate the natal year for subadults by distinguishing between
juvenile, subadult-1 (Basic I), subadult-2 (Basic II), near-adult (Basic III), and adult (Definitive)
plumages.

Sample sizes representing the four population segments increased during the course of the study,
not only because new eagles were tagged, but because eagles recruited from one segment to another.
For example, when juveniles reached one year of age, they became subadults and began to
contribute survival data for that segment. The same was true for "near-adults" (third-year subadults
in Basic III plumage) that became floaters (or occasionally breeders) by acquiring adult plumage in
their fifth calendar year of life. We chose 15 June as the date of transition from one yearly age class
to the next, a convention that provides a full year of tracking data for the juvenile segment, which
fledges from late May to early July. Fledglings tagged in the weeks prior to 15 June were included in
the age class that began with that date.

Rather than focus on one sex for survival estimation, we chose to radio-tag both sexes (see Appendix
A in Hunt et al. 1997 for explanation). We did so in consideration of funds available and the
resulting uncertainty of capturing enough individuals of a preselected sex to achieve a level of
statistical confidence appropriate to modeling. Furthermore, we lacked insight into which sex was
limiting (see Section 3.1, above). If we inadvertently chose the one in surplus, our modeling results
would be far less predictive of population impacts than a pooled sample of both sexes. The latter, of
course, would tend to produce a better-case scenario than a data set focusing on the limiting sex, i.e,
if the cause for limitation was a difference in age-specific survival.
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5.2 Radio-tracking
Weather permitting, we conducted roll-call censuses of the study area once per week by airplane,
beginning 14 January 1994. For this purpose we used a single-engine Cessna (Skylane 182) fitted
with side-facing antennas on the wing struts and a switch box in the cabin enabling separate
monitoring of antennas. In each survey flight, we scanned all transmitter frequencies along a course
designed to locate all the birds in the study area. We used a GPS (global positioning system) unit to
obtain transmitter locations and recorded position fixes in degrees, minutes, and hundredths of
minutes latitude and longitude and estimated routine accuracy within about 0.6 km of the
transmitter (see Marzluff, Vekasy, and Coody 1994). Later, we overlaid these fixes on maps
depicting vegetation (digitized from satellite photographs) and other features with a computer-
mapping program. We located eagles through 21 June 1997, after which we recorded only whether
eagles were alive or dead in otherwise identical surveys (through December 1997).

When we detected a mortality signal, we obtained a more accurate fix by flying lower to obtain finer
references to the signal. We recorded visual landmarks to facilitate later ground access. As soon as
feasible, usually within one day, we traveled to the site by road vehicle and on foot, located the
carcass, and recorded information pertaining to the cause of death. We collected carcasses for
necropsy. Some of the necropsies were performed at the U.S. Fish and Wildlife Service (USFWS)
Laboratory in Madison, Wisconsin, some at the California Fish and Game (CFG) Laboratory at
Rancho Cordova, and some by other veterinarians. Casualties within the WRA were processed by
KENETECH employees under the direction of the USFWS.

5.3 Censoring
If conditions were ideal for survival rate estimation, sample size would not be reduced by
emigration, all the transmitters would continue to function, and we would detect all extant
transmitters on every roll-call survey. Instead, some of the eagles move in and out of the area or
depart altogether, some temporarily escape detection even though they are present (this is
uncommon on a per-eagle basis), and some of the transmitters fail. Possible causes of transmitter
failure include battery discharge, circuit breakage, component malfunction, antenna dislocation,
separation of attachment ribbon bindings, and transmitter destruction. All but the last of these (see
Section 5.4) may be fairly regarded as occurring independently of the eagle’s fate.

This assumption of independence allows for a system of censoring in which eagles whose
transmitters have failed or those that have departed— the two possibilities are indistinguishable—
are deleted from survival calculations (see Hunt et al. 1995). The assigned date of deletion is midway
between the date of last detection and that of the first indication of signal disappearance. If, in the
case of an eagle leaving the study area or being missed in the survey, the signal is later redetected,
the eagle is reinstated within the current survival interval. However, survival status during the period
of signal absence is not restored, even though the eagle was obviously alive during that period. The
reason is that, if the eagle was indeed outside the study area during the period of signal absence,
considering it alive through that period would contribute to an upward bias in the survival estimate
for the overall sample. Although survival might eventually be verified by the return of the bird, its
death outside the study area would likely never be known (Bunck, Chen, and Pollock 1995).
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5.4 Transmitter Destruction Bias
Under certain conditions, transmitters may be destroyed by the mortality agent, a factor that violates
a core assumption essential to accurate survival estimation from radio-telemetry data: that censoring
is independent of fate (Bunck 1987). Although several modes of transmitter destruction may
conceivably be caused by a lethal agent, including poaching and car kills (Heisey and Fuller 1985),
none seems more likely than a turbine blade strike. In our opinion, a strike virtually anywhere along
the 40-cm length of the transmitter or its antenna would either destroy its function entirely or
reduce its signal-generating capability.

Not surprisingly, three of the turbine casualties of radio-tagged eagles recorded during our study
were discovered, not by means of telemetry, but by wind industry employees who happened upon
them in the course of maintenance work. In two cases, it was clear that the turbine blades had
destroyed transmitter function, and in the third, we were unable to find the transmitter despite a
lengthy visual search and use of a metal detector. These events suggest the very real possibility that
more tagged birds have been killed in the wind plant than are apparent in our data, a prospect that
would result in an underestimate of population impact.

One way of estimating the number of destroyed transmitters is to use existing casualty data to
calculate the probability of destruction per turbine strike. For nearly a decade, Green Ridge Services
Company (formerly KENETECH) has been collecting information on golden eagles and other raptors
killed and injured at the WRA. The data consist of photographs and detailed descriptions of wounds
and dismemberment. Karen Lougheed of , Green Ridge Services Company (formerly KENETECH)
examined the reports of 119 golden eagle casualties in the WRA collected from 1989 to the present,
which contained sufficient data for analysis. Of these, 80 blade strikes involved heads and
appendages only, while 39 included the body trunk. Lougheed judged that in 37 of the latter cases
the blade would likely have destroyed a transmitter, an overall incidence of 31%.

Two golden eagles in the WRA (photo by John Gilardi)
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The maximum number of eagles whose transmitters might have been destroyed by turbines can be
approximated by examining the movements of censored eagles prior to signal disappearance
(Pollock et al. 1989). Relocation data (through 21 June 1997) show that some were never detected
near the WRA, whereas others were there frequently in the weeks prior to signal loss. The former
can be censored with little danger of error; however, the latter include the possibility of a turbine
strike.

5.5 Survival Rate Estimation
To calculate annual survival rates for each population segment, we used the Kaplan-Meier estimate
as developed by Pollock et al. (1989) for staggered entry of radio-tagged individuals. By using this
technique, we are assuming that (1) individuals are sampled randomly, (2) survival time is
independent for each eagle, (3) the radio-tag does not influence survival, and (4) censoring is not
related to the eagle’s fate (see Section 5.4). The Kaplan-Meier procedure calculates the survival rate
in each of a series of successive periods and then multiplies it by the survival value obtained for the
previous period. The survival estimate for the entire series is therefore cumulative, declining over
time. The survival interval chosen for our calculations was four weeks.

Sampling bias may arise when the fates of birds radio-tagged as members of the same pair or as
siblings are not independent. For breeders, the question of sampling independence applies when the
samples of radio-tagged breeder sexes are pooled for survival estimation. There were four pairs in
which both members were tagged, and in one case, both members of a tagged pair died six weeks
apart, although under different circumstances and at an interval of 13 km. Considering the lack of
apparent bias in the survival data, we opted not to purge any tagged breeders from the survival
computation of pooled sexes. Neither did we refine our data set for sibling juveniles. Although local
circumstances influencing post-fledging mortality may affect siblings equally, the death of one
individual may actually increase the chance of the other surviving, particularly in cases involving
food or sibling aggression.

To model the proportional effect of turbine-related deaths on the population, we censored the eagles
killed by the turbine strikes on their estimated death dates and recalculated Kaplan-Meier rate
estimates of net survival. We did this on the assumption that the risk of turbine death is
independent of the risks from other mortality agents. That assumption would be invalid if, for
example, turbines kill disproportionate numbers of eagles stressed by poisoning, disease, or
malnutrition. Heisey and Fuller (1985) comment that mortality factors affecting natural populations
are rarely independent. As an example, they argue that censoring deaths resulting from fox predation
on rabbits would not allow one to conclude that the net survival rate would apply to the rabbit
population when foxes were eliminated from the study area. They maintained that, “… other sources
[would] no longer have to compete with fox mortality and hence [would] claim a larger number of
deaths,” a reasonable point with regard to competing predators.

In the case of eagles killed by turbines, it is true there would be more deaths from other causes if the
turbines were eliminated because there would very likely be more eagles. But that is not the
question. Rather, the question is whether per capita death rates from the aggregate of other causes
would increase. We argue that they would do so only if density-dependent factors came into play,
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i.e., the effects of crowding on vital rates (Ricklefs 1990). One might be increased food competition,
which could elevate the per capita risk of mortality from a variety of factors (eagles have virtually no
predators, and most eagle deaths in our study area have been human-related). It is unknown at what
point during population growth the action of density feedback upon survival would begin to have its
effect, given the prodigious mobility of golden eagles, the width of their food-niche in west central
California, and the large areas of grasslands without trees for nesting (survival habitat). Another
density-dependent factor, this time affecting natality rather than survival, might be floater
interference with nest success (see Section 3.2).

We cannot consider causal density dependence in our analysis because we have no way to predict
the level of its appearance. Rather than retreat from any analysis whose outcome might be affected
by density dependence, we can simply say that the population predicted under a regime of increased
vital rates might be restricted to a lower level by the action of density dependent forces. In any case,
we would be far more confident in the security of an eagle population regulated by density feedback
than one below the level at which such checks might present themselves.   

5.6 Estimating the Reproductive Rate
In January 1994, we began searching for all territorial pairs of eagles in the area within about 30 km
of the WRA boundary. We chose that distance on the somewhat arbitrary assumption that this
would be the maximum distance a breeding eagle might travel to the WRA to forage for its young.

We were aided in our nest search by people who knew of nesting pairs active during the last decade
(see Acknowledgments at end of report). Our initial visits to these approximately 15 known nesting
areas gave us an early understanding of preferred habitat upon which to base our surveys. Our main
technique for locating nests was to observe areas of habitat we presumed suitable for eagle nesting.
Where pairs were seen or suspected, we observed the terrain for long periods from stationary
vantage points. Obtaining permission from landowners often required letter writing and numerous
phone calls. In some cases, we were denied access altogether.

Eagles were most conspicuous in January and February when they were engaged in territorial
(undulation) displays prior to egg laying. Before the blue oaks and other deciduous trees acquired
their leaves, eagles and their nests were more visible than at later times when we searched for adults
soaring together or carrying prey to nests. We revisited areas to see whether eagles were incubating;
pairs not doing so by April were deemed unproductive. We later returned to nests where we had
observed incubation to determine whether broods were present and to count the number and ages
of young. Young were considered to have fledged if they reached eight weeks of age.

The natality parameter we are using to model the population is the number of fledged young per
territorial pair, the latter being only those pairs observed during or before incubation. This method
avoids the bias relating to the fact that successful pairs are easier to locate and identify late in the
breeding season than pairs that have failed (see Steenhof and Kochert 1982, Steenhof 1987). When
we started the study in January 1994, we knew of the existence of relatively few pairs, but found
many more during the course of the spring when young were in the nest. We were therefore obliged
to discount that year and base our estimate entirely on surveys conducted in 1996 and 1997, when
all requirements of objectivity were met (Steenhof 1987). In addition to the reproductive rate
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estimate, the results of successive nesting surveys provided an estimate of the territory reoccupancy
rate, an important component of the Moffat’s equilibrium model.

6.0 RESULTS OF POPULATION SAMPLING

This section presents the results we obtained from those aspects of our field study pertaining
specifically to population modeling as described in Section 7.0. For a fuller understanding in the
context of the ecology of the eagle population around Altamont Pass, we refer the reader to our two
previous NREL reports (Hunt et al. 1995, 1997). We anticipate an analysis of the wealth of data we
possess on the behavior of the eagles and the movements of those radio-tagged, particularly in
relation to habitat features and human activity.

                 

Fledgling golden eagle (photo by Daniel Driscoll)

6.1 The Radio-tagged Samples
From January 1994 through July 1996, we radio-tagged 179 golden eagles, including 76 females and
103 males. Of these, there were 79 juveniles, 45 subadults, 17 floaters, and 38 breeders. As
explained in Section 4.1, effective sample sizes increased among the subadult, floater, and breeder
categories when individuals in one segment transitioned to another. Therefore, by mid-June 1997,
we had obtained telemetry data on 106 subadults, 40 floaters, and 43 breeders in addition to the 79
juveniles.
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6.2 Evidence of Residency
We determined from the aerial roll-call surveys that the eagles we had radio-tagged tended to remain
within the study area. Of the 179 tagged eagles, six are known to have departed and an additional
17 were censored on the basis of signal disappearance (data through mid-June 1997). An unknown
number of these departed, whereas others may have remained alive or dead within the study area
with failed or destroyed transmitters (see Sections 5.1 and 5.4).

6.3 Distribution of Radio-tagged Eagles
Not only did the radio-tagged eagles tend to remain in the study area, the vast majority of relocations
were within 30 km of the WRA boundary (Hunt et al. 1995, 1997). Table 6.1 suggests a difference
in the tendency of eagles in each of the four population segments to enter the WRA. To some extent,
the differences may be related to the proximity of tagging location to the WRA (Hunt et al. 1997);
however, there are expected differences in behavior as well. Breeders, for example, rarely visited the
WRA, not only because of territory distance from it, but also because of their very limited home
ranges. This is fortunate, because the trend of population change is most sensitive to changes in
adult survival. Some of the juveniles remained at natal territories for extended periods after fledging,
but after leaving them, their tendency to enter the WRA appeared comparable to that of subadults
and floaters as a proportion of total relocations. Nevertheless, turbines killed no tagged juveniles. 

Table 6.1  Relocations and fatalities of radio-tagged golden eagles in the WRA from January 1994
through 21 June 1997. The reason the total number of birds in each segment exceeds the number
tagged is that juveniles advanced to subadulthood a year after fledging and third-year subadults
became floaters or breeders.

Individuals Total Relocations WRA-Related
Segment Birds in WRA Relocations in WRA Kills

Juvenile
1

62 40 (65%) 1343 259 (19%) 0
Subadult 95 67 (71%) 3337 818 (25%) 14
Floater 38 24 (63%) 1534 319 (21%) 3
Breeder 43 10 (23%) 1706 26 (2%) 0

Total 238 141 7920 1422 17

1
Data reported here represent relocations of juveniles only outside their nest areas.

6.4 Fatalities
We recorded 61 deaths among the radio-tagged eagles within the study area from January 1994
through December 1997. Figure 6.1 shows the apportionment of deaths per cause, of which turbine
blade strikes comprised 37.7%. Among the turbine strike fatalities, 19 were of subadults, 3 were
floaters, and only 1 was a breeder (Table 6.2). This is not surprising because breeders seldom visited
the WRA. The lack of turbine kills among the tagged sample of juveniles, despite their frequent
occurrence in the WRA (see Table 6.1), suggests that their behavior is less conducive to turbine
interaction.
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6.5 Survival Rates
In early December 1997, Hunt met with Franklin, Wilson, and Shenk in Ft. Collins, Colorado, for
the purpose of refining the survival data obtained through 2 December 1997. A computer program
(MARK, White and Burnham 1998) was used to select the most parsimonious set of Kaplan-Meier
survival estimates among the various groupings of life stages and sexes (Franklin et al. 1998). The
result was a pooling of survival data from juveniles, subadults, and floaters of both sexes to produce
a single estimate of annual survival for non-territorial eagles (0.7867, SE=0.0263). The estimate for
territorial eagles (breeders) was 0.8964 (SE=0.0371). To isolate the effect of turbine-related mortality
under the assumption of no competing risk (see Section 5.5), we (this report) later censored the
turbine-killed eagles on the estimated date of death (see Section 5.3), and recalculated the rate for
subadult+floater eagles at 0.8678 (SE=0.0187).

True survival rates may be lower than estimated because of the possibility of transmitter destruction
by the mortality agent. First, consider Karen Lougheed’s estimate that 31% of turbine blade strikes
would destroy transmitter function (see Section 5.4). Then recall the three cases of transmitter
destruction among the 22 turbine kills of subadults and floaters (see Table 6.2). If the 19 subadults

Figure 6.1.  Fatalities of 61 Golden Eagles 
Radio-tagged and Recovered in the Diablo Range

(January 1994 - December 1997)
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and floaters with intact transmitters represent 69% of the total (100% minus 31%), we would expect
27 to have been killed rather than 22. Also, consider that among the candidates for transmitter
destruction (data compiled through mid-June 1997) were 17 eagles whose signals disappeared
without evidence of departure, transmitter failure, or transmitter detachment.  We can possibly
eliminate six of these from consideration on the basis of their being detected rarely or never near the
WRA boundary. Of the remaining 11 censored eagles, 5 were in the WRA on the survey prior to
signal loss.

6.6 Results of Reproduction Surveys

6.6.1 Reproductive Data. Our natality estimate was based on surveys conducted in 1996 and 1997.
Our 1996 sample included 57 pairs, producing 39 fledglings for an average of 0.68 young per pair
(SE=0.11). In 1997, 59 pairs fledged 35 young for an average of 0.59 young per pair (SE=0.11).
Pooling the data for the two years yields a single estimate of 0.64 (SE=0.08) (however, see Sections
6.6.2 and 6.6.3 below). Brood size for the four years varied from 1.44 to 1.62 fledglings, comparable
to values reported for other populations. The results of our 1998 survey, not included in the
analysis, showed 64 pairs producing 37 young for an average of 0.58 fledglings per pair (see
Appendix A), a value virtually identical to that obtained the previous year.

6.6.2 Fledgling Sex Bias. Among 78 eagles we examined as fledglings (≥ 8 weeks old) during 1994–
1996, 47 were males and 31 were females. The departure of this ratio from unity is not significant by
Chi-square (Χ

2
=3.28, d.f.=1, p=0.07<10). However, the direction of male to female bias was

consistent over the three years of sampling: 18:13, 13:9, 16:9. Moreover, among the 69 eagles radio-
tagged as itinerants, there were 42 males and 27 females. This suggestion of a preponderance of
males in the population at large is not significant by Chi-Square (Χ

2
=3.26, d.f. =1, p=0.07<10);

again, however, there was a degree of consistency in the direction of M:F bias among the itinerant
categories: floaters = 12:6, subadults = 27:17, and free-ranging juveniles = 3:4.

These observations suggest that females may be the limiting sex in the Diablo Range population (see
Sections 3.1 and 5.1). The truth of this depends on whether (1) the observed preponderance of
males in the fledgling samples is normal for the population over the long term, and (2) there is no
strong sex bias in survival rates after eagles leave the nest. With regard to the latter condition,
Franklin et al. (1998) did not detect a sex bias within our samples that would justify the calculation
of sex-specific survival rates: instead, the sexes could be parsimoniously pooled for survival
estimation.

The literature on sex biases in nestling raptors offers a variety of evolutionary interpretations,
including the possibility that parents can manipulate the primary sex ratio of eggs in response to
environmental circumstances (Wiebe and Bortolotti 1992). The skewing of sex ratios in golden
eagles has been reported for other populations (Edwards et al. 1988) and appears, at least
circumstantially, associated with prey abundance cycles. Whether the bias is controlled by parental
manipulation of the primary ratio or through siblicide during periods of food shortage has not been
demonstrated (see Bortolotti 1989).
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 Table 6.2  Radio-tagged Golden Eagle Casualties, January 1994–December 1997

Cause of Death Juvenile Subadult Floater Breeder Totals

Turbine Strike
        Male 0 11 3 0 14
        Female 0 8 0 1 9

Electrocution
        Male 2 2 2 0 6
        Female 1 2 1 0 4

Car Strike
        Male 0 1 1 0 2
        Female 0 1 0 0 1

Shoooting
        Male 0 0 1 0 1
        Female 0 0 0 0 0

Botulism
        Male 0 0 0 1 1
        Female 0 0 0 0 0

Lead Poisoning
        Male 0 0 0 0 0
        Female 0 2 0 1 3

Probable Poisoning
        Male 0 1 0 0 1
        Female 0 0 0 0 0

Fence Collision
        Male 1 0 0 0 1
        Female 0 1 0 0 1

Killed by Eagle
        Male 0 0 1 1 2
        Female 0 0 0 1 1

Fledgling Mishap
        Male 4 N/A N/A N/A 4
        Female 2 N/A N/A N/A 2

Unknown
        Male 2 0 2 1 5
        Female 1 0 1 1 3
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 6.6.3 Reproductive Estimate for Modeling Purposes. Because of the suggestion that females are the
limiting sex in the Diablo Range population, there is reason to model the reproductive rate for that
sex alone in estimating the population trend, size, and age structure. Based on the fledgling sex
ratios reported in Section 6.6.2 and the reproductive data in Section 6.6.1, the reproductive rate is
estimated at 0.2543 (SE=0.0975) female young per occupied breeding territory (see Franklin et al.
1998).

6.6.4 Territory Density. We earlier reported an extraordinary density of eagle pairs in an 820-km
2
 area

of (mainly) oak savanna near the town of Livermore (Hunt et al. 1995, 1997). During the 1997
nesting survey, we found additional territories within that area, bringing the current total of known,
active territories to 44. This density of one pair per approximately 19 km

2
 is among the highest

recorded for the species (see Table 3.2 in Hunt et al. 1995), and is doubtless even higher because we
have been unable to survey much of the area. 

6.6.5 Territory Occupancy. We found all territories occupied by pairs in one year to be reoccupied by
pairs in the next. Breeders known to have died were soon replaced. Indeed, there was evidence of
fierce competition for territories. When we found a radio-tagged breeder male lying paralyzed from
botulism near its nest in early February 1997, his mate had already acquired a new partner. At
another territory where both radio-tagged adults died during September and October 1996, a new
pair had taken possession by mid-January 1997 and possibly earlier. In early March 1997, we found
a radio-tagged breeder male in its territory freshly killed by another eagle. Three days later, we
observed a pair of adults there. In January 1994, a breeder female was killed by another eagle and
soon replaced, possibly by the bird that killed her. In none of these cases did the surviving eagles
produce young in the year of replacement. We observed no nesting territories held by lone eagles.

6.6.6 Floater-to-Breeder Transition Rate. Radio-telemetry allowed us to crudely estimate the transition
rate of non-territorial eagles to territorial (breeder) status. Among our radio-tagged sample of
potential territory holders, i.e., floaters and near-adults (third-year subadults in Basic III plumage),
three near-adult females and one near-adult male acquired territories (see Section 6.6.7). During our
four-year study, we recorded the presence of tagged female potential recruits in the study area for a
total of 540 two-week periods. By the Kaplan-Meier method, the recruitment rate estimate for
females (near-adults plus floaters) is 0.13 per annum, and 0.02 for males (1,362 two-week periods
of detection). From these data, Franklin et al. (1998) calculated a single transition rate value of
0.0090 (CV=66.67%) for use in their first Leslie matrix model (see Section 8.1).

We recorded two additional cases of radio-tagged eagles taking possession of breeding territories.
Both involved breeders that left their territories, became floaters temporarily, and then secured
another (previously known) territory.

6.6.7 Subadults as Territory-holders. Other than the four near-adult recruits mentioned above, we
observed very few subadults as members of territorial pairs. We saw a pair, both subadults, at a
territory in 1994 (copulating) and again in the same territory in 1995. We observed mixed pairs (an
adult with a subadult) at two additional territories in 1994. Throughout the study, among 231 total
pairings where we observed both pair members, we recorded 7 pairings (in 5 territories) in which
one or both members were subadults, an incidence of 3.0% of the entire sample.
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All three tagged females that became territory-holders during the study were third-year subadults.
However, this suggestion of high subadult-to-breeder transition may have resulted from sampling
error, i.e., the near-adult and floater samples were skewed to the younger age categories as a result of
the maturing of eagles tagged as subadults. The first instance of subadult recruitment was in June
1995 when, during the prior two months, there were only two possible female candidates for
breeder transition, both of which were third-year subadults. (There were no tagged female floaters
detected in the study area.)  The second transition occurred in February 1996 when, during the two
previous months, there had been five transition candidates, three of which were near-adults and two
were one year older (first-year floaters). The third transition was in November 1996, when there had
been 10 candidates: 5 of these were near-adults, three were first-year floaters, one was a second-year
floater, and one was an older floater tagged in the month of the observed transition. Thus, over one-
half of the tagged sample of eagles potentially transitioning to territorial status consisted of third-year
subadults.

7.0 POPULATION EQUILIBRIUM MODEL

The equilibrium model we developed to predict the status of the golden eagle population is based on
the principle that territorial bird populations stabilize as a consequence of restricted fecundity per
unit area of landscape (Moffat 1903, Murray 1979, 1982, Hunt 1988, 1998; see Section 6.6.5). With
the assumption of annual constancy in both vital rates and territory occupancy, a stable population
with a stable age distribution develops. Equilibrium population size and the floater-to-breeder ratio
can be modeled with a simple life table model if breeders and floaters have the same survival rate.
Consider that C is the size of the annual cohort fledging within the defined area, j is the annual
survival rate of juveniles, s is the rate for subadults, v is the number of years of subadulthood after
the juvenile year (golden eagles are subadults for 3 years), a is the adult survival rate, and w is the
maximum number of years of adulthood. (We are assuming this to be 21 years.) Beginning with
cohort C, the numbers of individuals in subsequent age classes at equilibrium are

Cj, Cjs, Cjs
2
, Cjs

v
, Cjs

v
a, Cjs

v
a

2
 ..., Cjs

v
a

w-1

In our data, breeder survival estimates are appreciably higher than those of floaters. Therefore,
modeling population size requires an estimate of breeder age distribution. If territory ownership
tends to fall to younger adults rather than older ones, and floaters survive at a lower rate than
breeders, population size would be higher than under opposite circumstances. This effect of breeder
age distribution on modeling results would be most apparent in populations with proportionally
large numbers of floaters, and less consequential in populations with small floating segments at
equilibrium.

To accommodate the effect of breeder age distribution on population size, we assume, on one hand,
that the oldest eagles hold territories. By also considering the opposite assumption, the bounds of
variation in population size can be modeled. The literature tends to support the first assumption in
showing that young eagles hold territories more frequently in depleted populations, i.e., those
presumed to contain few floaters (Steenhof, Kochert, and Doremus 1983, Bergo 1984).
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Breeder age distribution has no effect on calculations of potential growth rate because, under that
regime, all adults would hold territories and have the survival rate of breeders. To calculate the
growth rate, we iterate the survivorship schedules of the yearly cohorts, allowing subsequent ones to
increase or decrease as a direct consequence of adult survival. The results are consistent with those
of a normal life table and with a standard Leslie matrix model (Model #2 in Franklin et al. 1998).

8.0 MODELING RESULTS

8.1 Results of Leslie Matrix Model
Franklin et al. (1998) developed a model (#1) specifically for our project that considers annually
based estimates of (1) stage-specific survival rates, (2) reproductive rate, and (3) a floater-to-breeder
transition probability, the latter being based on the proportion of radio-tagged floaters (and third-
year subadults) that acquired breeding territories during the study. From these parameters, Franklin,
Wilson, and Shenk employed matrix algebra to solve for the annual rate of population change (λ).
They calculated λ at 0.9068 (SE=0.03). The 95% confidence interval of their estimate (0.8437-
0.9699) did not include λ = 1.0 (the value for a stable population), meaning that, if their model and
its assumptions are valid, the population was in a state of decline during our study. If the parameter
estimates represented their true values, the model would indicate that the population was declining
at about 9% per year, a precipitous rate.

One problem with the first model of Franklin, Wilson, and Shenk is that it models the floater-to-
breeder transition rate as a constant. This is unrealistic because the parameter varies strongly with
population size. Indeed, the transition rate should approach zero when the floater population
reaches zero. Therefore, we requested Franklin, Wilson, and Shenk to construct a second (standard)
Leslie matrix model (#2) that assumes that all maturing eagles immediately enter the breeding
segment. Another reason we requested this calculation is that, if the true value for λ is less than 1.0
and the breeding segment is not buffered by immigrant floaters, the population will eventually lose
its floating segment (see Section 3.2). Thus, if the model predicts the total loss of floaters, the
inclusion of the floater parameter becomes moot and only adds to the variance of the estimate. This
is of particular concern because the floater-to-breeder transition rate estimate we were able to obtain
lacks precision (CV=66.67%).

Franklin et al.’s estimate of λ in the potential growth rate model was 0.9880 (SE=0.0396), a value
statistically indistinguishable from unity. However, several biological considerations suggest a lower
value. First, the model is doubtless overoptimistic in assuming perfect efficiency by eagles reaching
the third year of subadulthood in filling breeding vacancies by the next breeding season. Second, the
age structure of a reduced floating segment would be skewed toward the younger age categories.
Because these young eagles, and indeed any newly territorial eagle, would be initially less fecund
than those being replaced (Steenhof et al. 1983, Newton 1998), net productivity would be reduced,
thus accelerating the rate of decline.
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8.2 Moffat’s Equilibrium Model
The Moffat’s equilibrium model yielded a potential growth rate of 0.9906. This value, like the two
scenarios modeled by Franklin et al. (1998) suggests that the defined population is not at Moffat’s
equilibrium, i.e., the population cannot generate and sustain a floating segment. If true, an eventual
decline of the breeding segment is predicted, unless (1) a supply of immigrant floaters is available to
fill breeding vacancies, or (2) the current vital rate regime ameliorates. As expected, sensitivity
analyses for both the matrix and life table models found the population most responsive to changes
in adult survival and least affected by variation in juvenile survival and reproduction (Noon and
Biles 1990, Bowman, Schempf, and  Bernatowicz 1995, Hunt 1998).

In the absence of turbine-related fatalities and with the assumption of no competing risk factors, i.e.,
no density-dependent compensation accompanying the modeled increase in survival (see Section
5.5), the Moffat model estimates a potential growth rate of 1.0236. Under this regime, and consistent
with the assumption of vital rate constancy, a population of 100 pairs would reach Moffat’s
equilibrium at about 220 females (breeder age distribution would not be a significant factor), and
there would be about 36 floaters per 100 female breeders at fledging time (F:B=0.37). Such a
population would be considered intrinsically stable.

Figure 8.1 illustrates the expected change in stage structure of a golden eagle population declining
from an initial state of equilibrium at a rate of 1% per annum (λ=0.99) over a 50-year period. The
graph reflects the change of a single input parameter, namely, the reduction of the itinerant survival
rate from 0.8678 to 0.7867 (the modeled net impact of turbine development) (see Section 5.5). Note
that there is no suggestion of decline among the breeding segment until the floater reserve is
exhausted (Wilcove and Terborgh 1984).

Figure 8.1  Scenario of Changes in Population  Structure
 when Lambda = .99.  See text for explanation.
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9.0 DISCUSSION

Because of the rarity of published or unpublished studies of eagles or any other raptor species in
which survival estimation has been sufficient for population modeling, it is difficult to compare our
results with those of other investigations. We know of no such data for other populations of golden
eagles. Therefore, let us examine the findings of Bowman et al. (1995), who estimated the vital rates
of the bald eagle (Haliaeetus leucocephalus) population at Prince William Sound, Alaska, following the
Exxon Valdez oil spill.

1
 Point estimates of survival rates were as follows: adults, 0.88; subadults,

0.95; and juveniles, 0.71. The reproductive rate was 0.43 young per territorial female. Applying
these parameters to the Moffat model (Hunt 1998), the potential growth rate would be 1.06, and the
equilibrium population deriving from 100 pairs would be about 325 females, of which about 100
would be floaters (F:B=1.0).

To what extent the status of golden eagle populations is typified by these values is unknown, but
they describe a far more robust population than that suggested by our data for the golden eagles
around Altamont Pass. If the Prince William Sound population does indeed maintain one surplus
adult for every surviving breeder at fledging time, the population would clearly be considered a
“source” of recruits to less favorable habitats in the surrounding landscape. In contrast, the Altamont
eagles appear at or below the threshold of “sink” population status. Let us examine additional
evidence for and against this supposition.

9.1 Territorial Subadults
The clearest indication that a population lacks the security of an adequate floating segment is a high
incidence of subadults as members of breeding pairs (Newton 1979). We are thus encouraged by the
relatively low (approximately 3%) observed incidence of territorial subadults in the Diablo Range
(see Section 6.6.7).  In contrast, Bergo (1984) reported that 46–58% of pairs of golden eagles in his
study area in west Norway included at least one individual in subadult plumage, and in 19% of
cases, both individuals were subadults. He speculated that the population had been below carrying
capacity for some time. The incidence of subadults as pair members in Idaho was inversely
correlated with winter adult densities, but apparently unrelated to jackrabbit abundance (Steenhof et
al. 1983); when eagle populations were high, adult eagles tended to fill territory vacancies.

9.2 Reproductive Rate
The modeling results suggest that the population may decline to extinction if there are no immigrant
floaters to buffer the loss of breeders. However, if the number of breeding pairs were to decrease, the
per-territory reproductive rate would increase as remnant eagle pairs tended to occupy the more
productive sites. For example, in a population of Spanish imperial eagles (Aquila adalberti), mean
annual productivity per territory decreased as the population increased (Ferrer and Donozar 1996).
The authors explained the change by demonstrating that sites of highest quality were occupied first,
followed by expansion into lower-quality sites in the second period (see also Dohndt, Kempenaers,
and Adriaensen 1992, Rodenhouse, Holmes, and Sherry 1997). Hence, a reduction in overall
productivity resulted from lower average site quality. If the reverse is true for a declining population,

                                                  
1 Bald eagles share certain  demographic characteristics with golden eagles, e.g., reproductive rates are similar,
and  both species tend to reach adulthood (show definitive plumage) in the fifth  year of life.
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the reproductive rate can be expected to increase, possibly to the point of stabilizing the population,
albeit at a reduced level.

Our reproductive rate estimate of 0.64 fledglings per pair is lower than the 0.79 average reported for
the species (see Table 6.2 in Hunt et al. 1995). The apparent male bias is likely also atypical.   To
what extent reproductive rates and sex ratios vary over the long term cannot be known without a
longer period of sampling.

9.3 Biases Affecting Survival Estimation
Considering possible biases in survival rate estimation, we regard the following as most problematic:
(1) transmitter destruction by lethal agents, (2) the fate of emigrant juveniles, and (3) tagging
location of itinerants.

To consider the possibility that turbine-destroyed transmitters existed in addition to those known to
have been destroyed (see Sections 5.4 and 6.5), we recalculated the survival rate for non-territorial
eagles after weighting it with five phantom casualties (added to periods with the greatest number of
turbine deaths). We obtained a value of 0.7662 (SE=.0219). The result reduced the potential growth
rate estimate in the Moffat model from 0.9906 to 0.9840.

The second process that might impart an upward bias to the population estimates is the possibility
that juveniles leave the study area because they are unable to obtain food (Newton 1998). Juveniles
lack experience in food acquisition and competitive access to foraging areas and thus comprise the
segment most vulnerable to food shortage. It might well be adaptive for a starving juvenile to
emigrate on the chance of finding food elsewhere, an event that would prevent the detection of its
death. Among 72 juveniles we radio-tagged as fledglings, we censored 11 (15%), of which four were
known to have departed (see Section 5.1 in Hunt et al. 1997). Two of these traveled over 300 km
south of the study area: one (Case J8) was found dead (hit by a road vehicle); we found the
transmitter of the other (Case J4) almost two years after its last detection.

Finally, there is the question of how the capture locations of radio-tagged subadults and floaters may
have affected their tendency to enter the WRA. We caught most of the 62 itinerants in the WRA
vicinity in 1994 and 1995. Despite their high mobility within the study area, there is the possibility
of bias. As a way of assessment, we examined the gross movements of those subadults originally
tagged as fledglings. Figures 7.1 and 7.2 in Hunt et al. (1996) clearly show that these tended to
gravitate toward the WRA, approximating the distribution of eagles we tagged as subadults. This
circumstantial evidence and that of general residency suggest that the bias of capture location is not
strong, although a more careful analysis of movements of the two samples is indicated.

9.4 The Affected Population
One way of assessing the geographic extent of WRA influence on the eagle population is to truncate
the relocation data at specified radii from the WRA boundary. First, we recalculated the survival rate
of itinerants (subadults and floaters) occurring within a 20-km radius from the center of the WRA
(n=3,273 relocations; data through mid-June 1997). In modeling the results (Moffat model), we
assumed that distance from the WRA would not be an important factor in survival of juveniles and
breeders, considering that neither appeared much influenced by turbine blade strikes (see Table
6.2). With subadult/floater survival at 0.7430 (S.E.=0.04) within the 20-km circle, λ was 0.9785.
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For the 30-km radius (4,243 relocations), we calculated subadult/floater survival at 0.7680
(S.E.=0.03), giving a λ value of 0.9844.

9.5 Have Turbines Benefited Eagles?
Reviewers of an earlier draft of this report suggested that the wind turbines at Altamont Pass may
have increased golden eagle survival by increasing ground squirrel density and providing perching
structures. We do not regard this as a tenable hypothesis for several reasons. First, the WRA has a
long history of grazing, a factor favoring both high ground squirrel (and jackrabbit) densities (Evans
and Holdenried 1943, Linsdale 1946, Fitch 1948, Estep and Sculley 1987) and their vulnerability to
eagles (Kochert 1987). Thus, the WRA was doubtless excellent ground squirrel and golden eagle
habitat long before the building of the turbines. Although it is plausible that the additional soil
disturbance associated with turbine structures and the roads servicing them have increased ground
squirrel abundance in the WRA, we believe that such an increase in food supply could not even
remotely compensate demographically for the mortal risk to eagles associated with the presence of
the turbines. Consider that, at the date of this writing, at least 10 of 25 eagles tagged as fledglings in
1994 have been killed by turbine blade strikes. All 10 were killed after reaching subadulthood when
a maximum of only 20 tagged birds from the 1994 cohort could still be detected within the study
area, a 50% attrition rate.

Our observations in the WRA suggest that turbine structures are not of particular importance to
foraging eagles. In 94 sightings of perched eagles in the WRA, 34 (36%) were on transmission
towers, 33 (35%) were on the ground, 23 (24%) were on wind turbine towers, and 4 (4%) were on
other perching structures. The commonly observed mode of foraging was contour hunting, an in-
flight behavior (Hunt et al. 1995). Turbines disrupt an otherwise open landscape. Openness is
known to be the key factor in golden eagle foraging habitat worldwide (Marquiss, Ratcliffe, and
Roxburgh 1985, Watson 1992, 1997).

10.0 PROJECT CONTINUATION

PBRG has received promise of further funding by the California Energy Commission to radio-tag
eagles, monitor their movements and survival, and to conduct annual nest surveys.  The work will
track efforts by the wind industry to reduce the rate of turbine blade strikes at Altamont Pass.
Among possibly mitigating measures are plans to modify and/or remove turbines in “high-risk” areas.
The industry will replace turbine models with others thought to be more benign. The replacements,
reputedly more efficient by a ratio of seven to one, will result in fewer turbines overall in the WRA.
PBRG will continue to model the accruing data to estimate changes in the trend of the eagle
population and to identify those features of wind energy generation most conducive to golden eagle
mortality.



GOLDEN EAGLE POPULATION TREND  26
                                                                                                                                                                                        

ACKNOWLEDGMENTS

We thank the following individuals and agencies for their help:

Tom Cade of the Peregrine Fund conceived of this project and provided advice and encouragement
throughout. Ian Newton of the Institute of Terrestrial Ecology (UK) gave important conceptual
guidance, as did Alan Hastings of the University of California at Davis. We thank Peter Law, who
wrote the mathematical equations for computing Moffat’s Equilibrium. For guidance with the
statistical aspects of sampling for survival estimation and for modeling the population trend, we
thank the members of the NREL population modeling committee: Alan Frankin, Ken Pollock, Tanya
Shenk, and Ken Wilson. We honor the memory of Butch Olendorff of the Bureau of Land
Management, who helped us get started. We also thank John Marzluff and two anonymous reviewers
for valuable comments on a previous draft of this manuscript.

We thank Bob Thresher, Holly Davis, Karin Sinclair, William Algiene, and Al Miller of the National
Renewable Energy Laboratory; Dick Curry, Joan Stewart, Karen Lougheed, Denise Weingart, Ron
Barsic, and the field maintenance and operations staff of Green Ridge Services Company, formerly
KENETECH Windpower; Joe DiDonato, Steve Bobzien, Ray Budzinski, Ken Burger, Roger Epperson,
Dan Reasor, Laura Comstock, Louis Delacruz, Ron Mueller, and the dispatchers and staff of the East
Bay Regional Park District; Cynthia (Struzik) Haynes and Steve Furrer of the U.S. Fish and Wildlife
Service Enforcement Branch; Tim Koopman, Frank Marino, Ed Stewart, and Joe Naras of the San
Francisco Water District; Terry Cox, John Steere, and David Sterner of the Contra Costa Water
District; Steve Abbors and Joe Miyamoto of the East Bay Municipal Utility District; Jim Woolett, Jim
Lane, and Milt Grissom of Lawrence Livermore National Laboratory; Larry Ferri and Jess Cooper of
Mount Diablo State Park; Reece Currant, Phil Teresi, Rebecca Black and Carolyn Stephens, Mike
Bomberger, Don Rocha, Ed Tanaka, Donna Logan, and Bill Ventura of the Santa Clara County Parks
and Recreation Department; Tom Gaines and Jerry Mattson of SRI International; State Park
employees at Carnegie State Vehicular Recreation Area; Fred Arlt of the Vallecitos Nuclear Facility;
the folks at Tri-Valley Helicopters; the Livermore Airport flight controllers; Jim Estep and Stephanie
Myers of Jones & Stokes Associates, Inc.; Mark Fuller, Karen Steenhof, Mike Kochert, and Mary Beth
Cowing of the Raptor Research Technical Center; Ron Jurek, Debbie Osborn, Joe Powell, and Hugh
Rutherford of the California Department of Fish and Game; Gary Falxa, Gary Taylor, Ken Sanchez,
and Peter Lickwar of the U.S. Fish and Wildlife Service; Jim Grier of North Dakota State University;
Mike Nicholson of the Livermore Area Recreation and Parks Department; Paul Rankin of Concord
Navy Base; Ron Arnold of the Hetch Hetchy Project; Dan Cather of the Walnut Creek Open Spaces
District; Ron White of the Borges Ranch; and Kent Carnie of the World Center for Birds of Prey. We
thank Gary Beeman, Bob Richmond, and Colleen Lenihan for valuable information on local eagle
nest locations; Stephanie Gauthier, Brian Murphy, Jan Maxstadt, Gardiner Smith, and Matt Brown
for volunteer help; Richard Amarelo for help with data proofing; James Ganong, Martin Beebe, and
Marc Mangel for help with population modeling; Bill Clark for help in the field and for his help with
aging eagles; and the Peeters (Pam and Julian) for their help and support. Kim Titus, Grey
Pendelton, and Chris Bunck advised us regarding sampling and analytical procedures. Alan Franklin
gave a useful tip on the best date, for analytical purposes, to advance eagles from one population
segment to another. Vance Tucker modeled the dynamics of transmitter destruction by turbine
blades. KENETECH Windpower, Inc. paid for our tracking flights during January–March 1995. For
postmortem examination of eagle fatalities, we thank Lynn Creekmore, Lou Sileo, and Carol Meteyer



GOLDEN EAGLE POPULATION TREND  27
                                                                                                                                                                                        

of the National Wildlife Health Center, Madison, Wisconsin; Dr. Robert Hosea of the California
Department of Fish and Game; Dr. Michael Murray, and Dr. Craig Himmelwright.

Special thanks to the many landowners who helped us with information about eagles and/or let us
visit their property. They include: Joe Aljoe and Art Cherry of the N3 Cattle Co., Mike Arata, Paul
Banke of the Patterson Ranch, Joe Betchart, Wally and Roz Breuner, Greg and Shelley Bringelson,
Steve Brooks, the Caires, Mr. and Mrs. Wayne Calhoun, Mike Chastane, Steven and Jim Coates, Pat,
Mark, and Matt Connolly, Loree Cornwell, Reese and Ilene Cowden, Don and Mimi Devani, Harry
Engstrom, Stan Escover, Darlene Excel, Russ Fields, the Foleys, John Ginochio, Mr. and Mrs. John
Gomez, Joe Jesse, Jay Hodges and the Hodges family trust, Ione Holm, John and Ann Lindl, Jill and
Dennis Mallory, Mike and Paul Marciel, Mark and Melody Mariani, Bernie Matthews, Chuck and
Donna Neuenschwander, Vibert and Annette Purviance, Patty, Clara, and Donna of Ruby Hill, Cathy
Robocker of Diablo Grande, Josie Serpa, Dayton and Pearl Silva, Peggy Thompson, the folks at
Vaquero Farms, Hugh Walker and Lois Walker,  Cindy and Richard White, and Ernie, Bart, and Jeff
Wool.

LITERATURE CITED

Association of Bay Area Governments. 1996. Projections 96. Oakland, California.

Bergo, G. 1984. Population size, spacing and age structure of golden eagle (Aquila chrysaetos L.) in
Hordaland, West Norway. Fauna Norv. Ser. C, Cinclus 7:106-108.

Bortolotti, G.R. 1989. Sex ratios of fledgling golden eagles. Auk 106(3):520-521.

Bowman, T.D., P.F. Schempf, and J.A. Bernatowicz. 1995. Bald eagle survival and population
dynamics in Alaska after the Exxon Valdez oil spill. Journal of Wildlife Management 59:317-324.

Brown, J.M. 1969. Territorial behavior and population regulation in birds: A review and re-
evaluation. Wilson Bulletin 81:293-329.

Bunck, C.M. 1987. Analysis of survival data from telemetry projects. J. Raptor Res. 21:132-134.

Bunck, C.M., C. Chen, and K.H. Pollock. 1995. Robustness of survival estimates from radio-
telemetry studies with uncertain relocation of individuals. Journal of Wildlife Management 59:790-
794.

California Department of Water Resources. 1994. Urban water use in California. California
Department of Water Resources Bulletin 166-4. Sacramento, California.

California Fish and Game Department. 1992. Special Animals List. Natural Diversity Data Base.
Sacramento, California. 28 pp.

Dhondt, A.A., B. Kempenaers, and F. Adriaensen. 1992. Density-dependent clutch size caused by
habitat heterogeneity. Journal of Animal Ecology 61:643-648.



GOLDEN EAGLE POPULATION TREND  28
                                                                                                                                                                                        

Edwards, T.C., Jr., M.W. Collopy, K. Steenhof, and M.N. Kochert. 1988. Sex ratios of fledgling
golden eagles. Auk 105(4):793-796.

Estep, J.A. and R.D. Sculley. 1989. Habitat suitability index model: golden eagle (Aquila chrysaetos),
interior central coast ranges of California. Report to U.S. Bureau of Reclamation by Jones & Stokes
Assoc., Inc., Sacramento, California. 24 pp.

Evans, F.C. and R. Holdenried. 1943. A population study of the Beechey ground squirrel in central
California. J. Mammal. 24:321-260.

Ferrer, M. and J.A. Donazar. 1996. Density-dependent fecundity by habitat heterogeniety in an
increasing population of Spanish imperial eagles. Ecology 77:69-74.

Fitch, H.S. 1948. Ecology of the California ground squirrel on grazing lands. American Midland.
Naturalist 39:513-596.

Foster, C.C., E.D. Forsman, E.C. Meslow, G.S. Miller, J.A. Reid, F.F. Wagner, A.B. Carey, and J.B.
Lint. 1992. Survival and reproduction of radio-marked adult spotted owls. Journal of Wildlife
Management 56:91-95.

Franklin, A.B., K.R. Wilson, and T.M. Shenk. 1998. Estimated annual rate of change in a golden
eagle population at the Altamont Pass Wind Resource Area, California. Unpublished Report to
National Renewable Energy Laboratory, Golden, Colorado..

Garcelon, D.K. 1985. Mounting backpack telemetry packages on bald eagles. Institute for Wildlife
Studies, Arcata, California. 2 pp.

Gargett, V. 1975. The spacing of black eagles in the Matopos, Rhodesia. Ostrich 46:1-44.

Gargett, V. 1977. A 13-year population study of the black eagles in the Matopos, Rhodesia, 1964-
1976. Ostrich 48:17-27.

Gessaman, J.A. and K.A. Nagy. 1988. Transmitter loads affect the flight speed and metabolism of
homing pigeons. Condor 90:662-668.

Grinnell, J. and J. Dixon. 1918. Natural history of the ground squirrels of California. Monthly Bulletin
State Commission of Horticulture 7:597-708.

Haller, H. 1982. Raumorganisation und dynamik einer populationsokologie des steinahlers in den
Alpen. Der Ornithologische Beobacter 79:168-211.

Haller, H. 1996. Der steinalder in Graubunden. Der Ornithologische Beobacter 9:1-167.

Hansen, A.J. 1987. Regulation of bald eagle reproductive rates in Southeast Alaska. Ecology
68:1387–1392.



GOLDEN EAGLE POPULATION TREND  29
                                                                                                                                                                                        

Harlow, D.L. and P.H. Bloom. 1987. Status report: Buteos and the golden eagle. Pages 102-110 in
B.G. Pendleton (ed.), Proc. of the Western Raptor Management Symposium and Workshop. Natl.
Wildl. Fed. Sci. and Tech. Ser. No. 12, Washington, D.C.

Harmata, A.R. 1982. What is the function of undulating flight display in golden eagles? Raptor Res.
16:103-109.

Heisey, D.M. and T.K. Fuller. 1985. Evaluation of survival and cause-specific mortality rates using
telemetry data. Journal of Wildlife Management 49:668-674.

Hooge, P.N. 1991. The effects of radio weight and harnesses on time budgets and movements of
acorn woodpeckers. Journal of Field Ornithology 62:230-238.

Hunt, W.G. 1988. The natural regulation of peregrine populations. Pages 667-676 in Cade, T.J., J.H.
Enderson, C.G. Thelander, and C.M. White (eds.), Peregrine Falcon Populations: Their Management
and Recovery. The Peregrine Fund, Inc., Boise, Idaho.

Hunt, W.G. 1998. Raptor floaters at Moffat’s equilibrium. Oikos 82:191-197.

Hunt, W.G., D.E. Driscoll, E.W. Bianchi, and R.E. Jackman. 1992. Ecology of bald eagles in Arizona.
Report to U.S. Bur. of Reclamation by BioSystems Analysis, Inc., Santa Cruz, California. Contract
No. 6-CS-30-04470.

Hunt, W.G., R.E. Jackman, T.L. Brown, D.E. Driscoll, and L. Culp. 1997. A population study of
golden eagles in the Altamont Pass Wind Resource Area: second-year progress report. Report to
National Renewable Energy Laboratory, Subcontracts XAT-5-15174-01 and XAT-6-16459-01 to the
Predatory Bird Research Group, University of California, Santa Cruz, California.

Hunt, W.G., R.E. Jackman, T.L. Brown, J. G. Gilardi, D.E. Driscoll, and L. Culp. 1995. A pilot
golden eagle population study in the Altamont Pass Wind Resource Area, California. Report to
National Renewable Energy Laboratory, Subcontract No. XCG-4-14200 to the Predatory Bird
Research Group, University of California, Santa Cruz, California.

Kochert, M.N. 1987. Responses of raptors to livestock grazing in the western United States.
Pages 194-203 in B.G. Pendleton  (ed.), Proceedings of the Western Raptor Management Symposium
and Workshop. Natl. Wildl. Fed. Sci. and Tech. Ser. No. 12. Washington, D.C.

Linsdale, J.M. 1946. The California Ground Squirrel. University of California Press, Berkeley. 475
pp.

Marquiss, M., D.A. Ratcliffe, and R. Roxburgh. 1985. The numbers, breeding success and diet of
golden eagles in southern Scotland in relation to changes in land use. Biol. Conserv. 34:121-140.



GOLDEN EAGLE POPULATION TREND  30
                                                                                                                                                                                        

Marzluff, J.M., M.S. Vekasy, and C. Coody. 1994. Comparative accuracy of aerial and ground
telemetry locations of foraging raptors. Condor 96:447-454.

Marzluff, J.M., M.S. Vekasy, M.N. Kochert, and K. Steenhov. 1997. Productivity of golden eagles
wearing backpack radiotransmitters. Journal of Raptor Research 31:223-227.

Massey, B.W., K. Keane, and C. Boardman. 1988. Adverse effects of radio-transmitters on the
behavior of nesting least terns. Condor 90:945-947.

Moffat, C.B. 1903. The spring rivalry of birds: some views on the limit to multiplication. Irish
Naturalist 12:152-166.

Murray, B.G., Jr. 1979. Population Dynamics: Alternative Models. Academic Press. New York.

Murray, B.G., Jr. 1982. On the meaning of density-dependence. Oecologia 53:370-373.

Newton, I. 1979. Population Ecology of Raptors. Buteo Books. Vermillion, South Dakota. 399 pp.

Newton, I. 1998. Population Limitation in Birds. Academic Press, New York. 597 pp.

Noon, B.R. and C.M. Biles. 1990. Mathematical demography of spotted owls in the Pacific
Northwest. Journal of Wildlife Management 54:18-27.

Orloff, S. and A. Flannery. 1992. Wind turbine effects on avian activity, habitat use and mortality in
Altamont Pass and Solano County Wind Resource Areas. Report to the Planning Departments of
Alameda, Contra Costa and Solano Counties and the California Energy Commission, Grant No. 990-
89-003 to BioSystems Analysis, Inc., Tiburon, California.

Peitz, J.J., G.L. Krapu, R.J. Greenwood, and J.T. Lokemoen. 1993. Effects of harness transmitters on
behavior and reproduction of wild mallards. Journal of Wildlife Management 57:696-703.

Pollock, K.H., S.R. Winterstein, C.M. Bunck and P.D. Curtis. 1989. Survival analysis in telemetry
studies: the staggered entry design. Journal of Wildlife Management 53(1):7-15.

Pulliam, H.R. 1988. Sources, sinks, and population regulation. American Naturalist 132:652-661.

Ricklefs, R.E. 1990. Ecology. W.H. Freeman and Company, New York. 896 pp.

Rodenhouse, N.L., T.W. Sherry, and R.T. Holmes. 1997. Site-dependent regulation of population
size: a new synthesis. Ecology 78:2025-2042.

Scott, T.A. 1985. Human impacts on the golden eagle population of San Diego County from 1928 to
1981. M.S. thesis, San Diego State University. 101 pp.

Shenk, T.M., A.B. Franklin, and K.R. Wilson. 1996. A model to estimate the annual rate of golden
eagle population change at the Altamont Pass Wind Resource Area. Pages 47-56 in Proceedings of



GOLDEN EAGLE POPULATION TREND  31
                                                                                                                                                                                        

the National Avian – Wind Power Planning Meeting II, Palm Springs California, 22-22 September
1995. Prepared for the Avian Subcommittee of the National Wind Coordinating Committee by
RESOLVE Inc., Washington D.C., and LGL Ltd., King City, Ontario. 152 pp.

Steenhof, K. 1987. Assessing raptor reproductive success and productivity.  Pages 157-170 in B.A.
Giron-Pendleton, B.A. Millsap, K.W. Cline, and D.M. Bird (eds.), Raptor Management Techniques
Manual. National Wildlife Federation, Washington, D.C.

Steenhof, K. and M.N. Kochert. 1982. An evaluation of methods used to estimate raptor nesting
success. Journal of Wildlife Management 46:885-893.

Steenhof, K., M.N. Kochert, and J.H. Doremus. 1983. Nesting of subadult golden eagles in
southwestern Idaho. Auk 100:743-747.

Tjernberg, M. 1985. Spacing of golden eagle Aquila chrysaetos in relation to nest site and food
availability. Ibis 127:250-255.

Trent, T.T. and O.J. Rongstad. 1974. Home range and survival of cottontail rabbits in southwestern
Wisconsin. Journal of Wildlife Management  38:459-472.

Vekasy, M.S., J.M. Marzluff, M.N. Kochert, R.N. Lehman, and K. Steenhof. 1996. Influence of radio
transmitters on prairie falcons. Journal of Field Ornithology 67:680-690.

Watson, J. 1992. Golden eagle Aquila chrysaetos breeding success and afforestation in Argyll. Bird
Study 39:203-206

Watson, J. 1997. The Golden Eagle. T. Poyser and A.D. Poyser, London. 374 pp.

Wiebe, K.L. and G.R. Bortolotti. 1992. Facultative sex ratio manipulation in American kestrels.
Behavioral Ecology and Sociobiology 30:379-386.

White, B.C. and K.P. Burnham. 1998. Program MARK—survival estimation from populations of
marked animals. Bird Study. In press.

Wilcove, D.S. and J.W. Terborgh. 1984. Patterns of population decline in birds. American Birds
38:10-13.



GOLDEN EAGLE POPULATION TREND  32
                                                                                                                                                                                        

APPENDIX A

Results of the 1998 Golden Eagle Reproductive Survey
in the Area Surrounding Altamont Pass

(NREL CONTRACT NO. AAT-8-18210-01)

DATE OF REPORT: JULY 21, 1998

The Predatory Bird Research Group (PBRG) at the University of California is conducting a long-term
study of the impacts of wind energy generation on the population dynamics of golden eagles (Aquila
chrysaetos) inhabiting the Diablo Mountain Range. The project, now in its fifth year, requires
estimates of survival and reproduction as input parameters for population trend analysis, the
predictive power of which depends upon the accuracy of these estimates. The reproductive rate
parameter is problematic because of the unknown extent to which climate, prey fluctuations, and
other factors may influence nesting success and brood size from year to year. Moreover, only two
years of survey data are available: 1996 and 1997. For these reasons, the National Renewable Energy
Laboratory (NREL) has provided partial funding for a third reproductive survey. This report details
its results.

Methods

We define the natality parameter as the number of fledged young (≥ 54 days, Steenhof 1987) per
territorial pair, the latter being only those pairs observed during or before incubation. This
requirement overcomes the bias that successful pairs are easier to locate and identify late in the
breeding season than pairs that have failed (Steenhof and Kochert 1982, Steenhof 1987).

Meeting these standards required several visits to each territory. We collected occupancy data during
the courtship and incubation period of the breeding cycle, from early January through mid-April.
After determining occupancy, we revisited territories one to three times during the incubation period
(February–April), until either an active nest site was located or the lack of one determined; known
pairs that had shifted to alternate nests required an extra visit or two. We revisited each active
territory to estimate the age of the brood so as to schedule the final visit in May or June when the
young would be of proper age for counting. Thus, it was necessary to observe some territories on
four or more occasions. We attempted to determine in all cases whether pair members displayed
subadult plumage.

One person performed the entire survey from 5 January through 23 June 1998. In all, the survey
required 111 visits to the study area and approximately 1,000 hours of work.
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Results

The 1998 territory reoccupancy rate was 100%, and all territories contained pairs rather than single
adults. Of the 79 territorial pairs observed, 4 were newly discovered. We had surveyed 74 of the 75
previously known territories last year; the remaining territory (North Peak), unsurveyed in 1997,
had been occupied by a pair in 1996. Only 1 of the 156 territorial individuals observed was
identified as subadult.

We determined the reproductive outcome at 64 territories, all of which met the standard of having
been observed early in the nesting season. Thirty-five pairs failed to fledge young, 21 produced one
fledgling, and 8 had two fledglings, a reproductive rate of 0.58 fledglings per occupied territory.
Brood size averaged 1.28 young. Barren nests resulted either from pairs failing to lay eggs or from
losses during or following incubation. We know that three pairs failed in the egg stage, two in the
chick stage, and four in either the egg or chick stage. We do not know what proportion of the
remaining failed pairs laid eggs. Two broods we observed lost one of two chicks around the fifth
week of life. We detected five breeder replacements occurring either prior to or early in the breeding
season; none of these pairs with new members was successful in producing young.    

Summary and Discussion

Despite the extraordinary amount of rainfall and the high number of rainy days, the 1998
reproductive rate of 0.58 young per territorial pair was virtually identical with the figure from the
previous year. The proportion of productive pairs was actually higher in 1998 than in 1996 or 1997,
yet average brood size was appreciably smaller, i.e., there were relatively few two-chick broods.

Although it is tempting to conclude from these last three years that reproduction varies but little on
an annual basis, our data suggest that the first year of our study, 1994, was one of much higher
reproduction. Admittedly, our 1994 estimate of 1.27 fledged young per occupied territory (48
young at 37 sites) was likely biased in favor of successful nests found late in the breeding season.
However, if we imagine a scenario of having surveyed in 1994 all 64 of the territories we surveyed in
1998, and if every one of the additional 27 sites (64 minus 37) had failed, the reproductive rate in
1994 would have been 0.75 young per occupied territory, higher than all the other years. Despite
the more thorough surveys in 1996–1998, we counted a maximum of only 39 young, compared
with 48 in 1994. There can be little doubt that the eagle population produces far more young in
some years than in others. 
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The wind industry has annually reported 28–43 turbine blade strike casualties of golden eagles in the Altamont Pass Wind Resource Area,
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